招警行测答题技巧:同余特性巧解不定方程(2)
三、同余特性解不定方程
例1:x+3y=100,x、y皆为整数,则x是多少?
A.41 B.42 C.43 D.44
【立正解析】C。3y能被3整除,100÷3…1,根据余数的和决定和的余数得x除以3余数为1,所以选择C。
例题2:7a+8b=111,已知a,b为正整数,且a>b,则a-b=?
A.2 B.3 C.4 D.5
【立正解析】B。8b除以8余0 ,而111÷8除以8余7,利用同余特性余数的和决定和的余数, 7a÷8余数为7,再利用余数的积决定积的余数,得到a÷8余1。正整数范围内第一个÷8余数为1的数,而题干要求a大于b,而1是最小的正整数,因此a不能等于1 ,下一个÷8余1的数为9,此时b=6,恰好满足a-b都为正整数,且a大于b ,因此a-b等于3 ,结合选项,选择B。
另解:7a÷3余a,8b÷3余-b,所以(7a+8b)÷3余数为a-b,111÷3余数为0,同余3,所以选B。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>