电话:0731-83595998
导航

招警行测答题技巧:逆效率工程问题解题“秘籍”

来源: 2017-12-14 22:04

 交替合作问题:交替合作问题与合作问题有很大的区别体现在"交替"两个字,普通的合作问题就是在同一时间多个人同时从事工作,合作效率为各部分效率的加和;而交替合作是就是一种按固定的顺序轮流开展工作。

解决交替合作问题关键:

1、找出一个周期持续的时间;

2、确定一个周期可以完成的工作量;

3、在出现有剩余工作量的情况需要根据工作顺序认真计算,确定到最后工作完成。

除了关于正效率交替合作的问题,在考试中也会涉及到负效率交替合作的问题,我们以典型的"青蛙跳井"模型进行讲解。

【例1】现有一口高 20 米的井,有一只青蛙坐落于井底,青蛙每次跳的高度为 5 米,由于井壁比较光滑,青蛙每跳 5 米下滑 2 米,请问,这只青蛙几次能跳出此井?

【中公解析】青蛙每跳 5 米下滑 2 米,相当于青蛙一次只能跳 3 米,但青蛙1次能跳正效率为5米,5 次后离井口还有 5 米,此时,再跳一次就直接跳出去了,所以,总共跳 6 次。【例2】甲乙两个水管单独开,注满一池水分别需要20小时,15小时。丙水管单独开,排一池水需要12小时。若水池没水,同时打开甲乙两水管,4小时后,在打开排水管丙,问水池注满还需要多少小时?

A.10 B.12 C.15 D.16

【答案】 D。

【中公解析】问题是问注满水池需要多少时间,因此两个注水管甲乙都是帮助实现任务的,都是正效率。丙是阻碍完成任务的即为负效率。假设工程总量为20、15、12的最小公倍数60,则甲的效率:3,乙的效率:4;丙的效率:-5。甲乙先同时注水4小时,已经完成的工程量=(3+4)×4=28,还剩工程量=60-28=32,则还需要注水时间=32÷(3+4-5)=16小时。

中公教育专家认为,关于逆效率交替合作问题,考生们只要把以上两道例题能够很好的理解,快速判断题型,找到最大正向效率,就可以解决大多数问题。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端