招警行测答题技巧:多劳力合作问题
一、什么是多劳力合作问题
多劳力合作问题是指多个人去做多项工作,而他们各自做这些工作的效率不同或者时间不同,最后问:时间一定的情况下,工作量最多是多少?或者工作量一定的情况下,时间最少是多少?所以,首先要充分把握住多劳力合作问题的特征,为我们接下来解决这个问题就打下很好基础。
二、多劳力合作问题的原则
每个人都要去做自己所擅长的工作。因为我们最终是要达到工作量最多或者时间最少这个核心目标,所以每个人的合理分工就很关键,所以我们要找到每个人各自所擅长项。
三、多劳力合作的核心
判断出相对擅长项。这里的相对的擅长项是指两个效率或者两个时间的比值。注意:并不是每个人的绝对擅长项。
四、两种基本的模型
模型一、已知效率P,甲乙做A、B两项工作,由此得到结论:
甲做A工作,乙做B工作。模型二、已知时间t,甲乙做A、B两项工作,由此得到结论
:乙做A工作,甲做B工作接下来我们来看两道具体的例题:
例题1、小王和小刘手工制作一种工艺品,每件工艺品由一个甲部件和一个乙部件组成,小王每天可以制作150个甲部件,或者制作75个乙部件;小刘每天可以制作60个甲部件,或者制作24个乙部件。现两人一起制作工艺品,10天时间最多可以制作该工艺品( )件。
A.660 B.675 C.700 D.900
答案:C
【中公解析】:根据题意,先列出一个表格:
小王做甲乙两项工作的效率之比是150/75=1/2,而小刘做甲乙两种工作的效率之比是60/24=2.5/1,所以我们得到结论:小刘更擅长做甲,小王更擅长做乙。小刘的10天时间全部用来制作甲部件,可以制作60×10=600(个)。小王做600个乙部件,只需要600÷75=8(天),还剩余两天。当小王剩余两天所做甲、乙部件数量相等时,所做工艺品总件数最多。小王做甲、乙两个部件的效率比为2∶1,要使两天中所做甲、乙部件数量相等,则小王应该用两天中的1/3时间做甲部件,可做150×2×1/3=100(个);用两天中的2/3时间做乙部件,可做75×2×3=100(个)。此时所做工艺品总件数为600+100=700(件)。例题2、有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,最少需要多少天?
A.7 B.8 C.9 D.12
答案:B
【中公解析】:根据题意,先列出一个表格:
张师傅做甲乙两项工作的时间之比是9/15=0.75/1,而王师傅做甲乙两种工作的时间之比是3/15=0.2/1,所以我们得到结论:王师傅更擅长做甲,张师傅更擅长做乙。王师傅3天就可以把自己负责的甲工作做完,要保证时间最短,所以王师傅要去帮助张师傅去完成乙工作,当王师傅完成甲工作时,张师傅已经完成乙的1/12*3=1/4,剩余的3/4由王师傅和张师傅合作完成,需要3/4除以(1/12+1/15)=5天,所以合计最少需要3+5=8天。
通过以上的两个例题,我们发现,只要我们掌握多劳力合作问题的原则和核心思想,解决问题还是比较快的,后面的就是计算了,所以此类题目还需要多去练习,熟能生巧,方能又好又快解决。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>