到底什么是鸡兔同笼问题呢?相信很多考生还有点迷糊,鸡兔同笼问题是行测理科试题中的一个重要类型,其实这类题型自古就有记载。据《孙子算经》记载:今有雉兔同笼,上有35头,下有94足,问雉兔各有几何?这就是最初的鸡兔同笼问题。当然举一反三,很多符合这类题型特征的都可归类为鸡兔同笼。那么这特征是什么呢?难道是在题目当中看到出现鸡和兔的问题,就想到这是个鸡兔同笼问题呢?答案肯定不是!接下来中公教育专家跟大家一起来看一下鸡兔同笼问题的特征:
按照《孙子算经》的记载,题干已经告诉我们头的总数和脚的总数,并且隐含条件鸡有一个头两只脚,兔有一个头四只脚。因此我们这样归纳鸡兔同笼的特征:已知某两种事物两个属性的指标数和指标总数,分别求个数问题。在以后解题中,只要题干符合这个特征,我们就可以认定是鸡兔同笼问题。
例如:一共有20道题目,答对一道得5分,答错或不答扣一分,要答对多少道题,才能得82分?
这个题它是不是一个鸡兔同笼问题我们就看它符不符合这个特征,题中告诉我们,答对一题和答错或不答一题是两个事物,并且告诉我们事物的两个属性:题目和得分,指标数分别为对一道5分,错一道负1分,指标总数是一共20道题,一共得82分,所以它符合鸡兔同笼的特征,是一个鸡兔同笼问题。
再如:某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件就能得到工资10元,每做一个不合格零件将被扣除5元。已知某人一天共做了12个零件。那么他在这一天做了多少个不合格的零件?
这个题是不是一个鸡兔同笼问题呢?我们也看一下它是否符合这个特征,题干告诉我们合格零件和不合格零件是两个事物,并且告诉我们事物的两个属性:个数和工资,指标数分别为:一个合格零件10元,一个不合格零件扣5元,指标总数是12个零件,但是它还缺少一个指标总数,即没有告诉我们共得的工资!所以它不符合鸡兔同笼问题,这就不是鸡兔同笼问题。我们要怎么样修改它才能变成鸡兔同笼问题呢?只要在题干中告知工资总数,然后再让我们求不合格零件或者合格零件多少个,它才可以变成鸡兔同笼问题。
点击加载更多评论>>