电话:0731-83595998
导航

行测数量关系技巧:走楼梯 模型

来源: 2018-11-05 13:00

 、原理简介

例题:有10阶楼梯,每次走一阶或者两阶,把楼梯走完有几种方法?

思考:若要走到10阶,那么要么就是通过9阶到达要么经过8阶到达,也就是说可以通过9阶的方法数与8阶的方法数相加得到,同理,若想得到9阶的方法数,则需要8阶和7阶相加,所以我们可以的到推导过程,若走楼梯每次走一阶或者两阶那么走第n阶的方法数就是S(n)=S(n-1)+S(n-2)总结:

1、需通过爬楼梯的 不同状态分析出递推公式。

2、先求出前几项,建立递推关系,即可得到所求值。

关于走楼梯模型的推广:

例题:有10阶楼梯,每次走一阶或者三阶,想要把楼梯走完,有几种方式?

 

思考:本题与上题最大的不同在于走的方式发生了一些变化,以前是一阶或者两阶的走的方式,现在是一阶或者三阶的方式,则若想得到S(10),则需要得到S(9)+S(7)的答案,需要得到S(9),则需要得到S(8)+S(7)的答案,由此可建立递推公式,若欲求的S(n)的答案,则得到S(n)=S(n-1)+S(n-3),所以需得到S(1)=1,S(2)=1,S(3)=2,

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端