行测工程问题的三架“便捷 桥梁”
方法简介及例题展示
第一种情况,比较直白,题干中直接给出了效率的比值,这时候就直接将比值的值设为我们的效率,依据基本公式进行计算,如下题:
【例题1】甲、乙、丙三人共同完成一项工作需要6小时。如果甲与乙的效率之比为1:2,乙与丙的效率比为3:4,则乙单独完成这项工作需要多少小时?
A.10 B.17 C.24 D.31
【答案】B
【解析】题干直接就出现了甲与乙、乙与丙的效率比,有多个比例,可根据前面比例的方法进行统一到甲:乙:丙=3:6:8,然后就设甲、乙、丙的效率分别就是3、6、8。想要知道乙的时间,效率知道了,只需要再有工作总量就行,而甲乙丙三人合作6小时,合作效率为三者和3+6+8=17,那么工作总量就是6×17,则乙效率为6,时间为17。选B。
第二种情况,题干中没有出现效率比的字眼,但是存在一些工作等量的关系,如下面这个题目:
【例题2】一项工程需要甲,乙,丙三个工程队共同完成需要22天,甲队的工作效率是乙队效率的3/2倍,乙队三天的工作量是丙队两天工作量的2/3。三队同时开工,2天后,丙队调往另一工地,那么甲乙再干多少天才能完成该工程?
A.20 B.28 C.38 D.42
【答案】B
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>