2020贵州军队文职考试行测备考_巧解"鸡兔同笼"
“鸡兔同笼”问题早在1500年前的《孙子算经》就有记载,我们可以利用方程的思想解决问题,但是方程思想解决问题是比较慢的。接下来为大家介绍一种解“鸡兔同笼”的简单快速的方法。
1、“鸡兔同笼”基本模型:今有稚兔同笼,上有三十五头,下有九十四足,问稚兔各几何?
鸡兔同笼模型解法一:假设笼子里全是兔,假设之后得到35×4=140只脚,此时多出了140-94=46只脚,多出的为鸡的46÷2=23只鸡,由此得出35-23=12只兔。
解法二:假设笼子里全是鸡,假设之后得到35×2=70只脚,此时少了94-70=24只脚,少出的为兔的24÷2=12只兔,由此得出35-12=23只鸡
2、例题精讲:
例1 一份中学数学竞赛试卷共15题,答对一题得8分,答错一题或不做答均倒扣4分。有一个参赛学生得分为72分,则这个学生答对的题目数是()
A.9
B. 10
C.11
D.12
解析:C. “鸡兔同笼”模型,假设数学竞赛试卷题目全答对,15×8=120分,120-72=48分,48÷(8+4)=4道错或者不答,共答对15-4=11道题。
例2 某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资1,每做一个不合格零件将被扣除5元,已知某人共做了12个零件,得工资9,那么他在这做了多少个不合格零件?
A. 2
B.4
C.6
D.8
解析:A. “鸡兔同笼”模型,合格一个零件得1,不合格一个零件损失10+5=15元,若12个零件都合格,那么这个人可以得到12×10=12,可现在只得了9,说明做了(120-90)÷15=2个不合格的零件。
例3 某村农民小周培育30亩新品种,每培育一亩获利80,如果失败倒赔20,年终小周共获利1800,问他培育多少亩新品种?
A.25
B. 24
C.23
D.22
解析:B. “鸡兔同笼”模型,假设全部培育,共获利30×800=2400,24000
-18000=600,6000÷(800+200)=6亩失败,所以他培育了30-6=24亩新品种。
综上所述,在银行考试中“鸡兔同笼”的模型相对是比较简单的,不用各位考生费多大的功夫就可以把这个知识点掌握。在今后的练习中,紧紧把握住模型中的要领,学会假设A求出B的方法,能够帮助各位考生在行测考试中取得不错的成绩。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>