电话:0731-83595998
导航

2021年广东南方电网招聘考试行测知识点:通过构造数量的方法

来源: 2020-02-19 09:22

通过构造数量的方法

和定最值中有一个逆向求极值是考试的一个难点,对于逆向极值问题我们可以通过构造等差数列来解决问题。

例题1:某公司有7个部门,共有56人,每个部门的人数互不相等,已知研发部人数最多。问研发部最少多少人?

解析:要想人数最多的研发部门人数最少,那么其他部门就得人数尽量多,从多到少,彼此相差1 ,形成公差d=1的等差数列是最理想的状态,56÷7=8,刚好7项,8就放在中间那一项,即第四项,整个数列就是11、10、9、8、7、6、5,所以研发部门人数最少11人。

这个题是56人刚好可以平均分为8人,如果改为57人,除以8就不是整数了,这时怎么办?依然还是57÷7=8…1,先不考虑这个余数1,依然构造数列11、10、9、8、7、6、5,余数1加在哪里,加在后面不行,人数是互不相等的,只能加在第一个上,11+1=12,所以研发部门最少12人。

3.方程法

将所有量用所设未知数x表示出来,按照总和一定列一元一次方程。

例1.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?

A.22B.21C.24D.23

【解析】题干描述中“100人参加7项活动”明显是7个量的和一定,最后所求也是问的最大值,所以很显然就是和定最值问题。求第四多的活动最多有多少人,只要使其他量尽可能少即可,此时可以确定第五、六、七项活动的人数,分别是1,2,3人。其余项没法直接确定,但我们可以确定要使第三项也尽可能小,再小也不能少于第四项的人数,再结合题干人数不一样,故第三项最小也得比第四项多1人,第二项比第三项多一人,第一项比第二项多1人。故可设第四项位x,可得以下方程: (x+3)+ (x+2)+ (x+1)+x+3+2+1=100,解得x=22,选择A项。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端