2018年成人高考《数学(文)》章节难点解析(10)
难点10 函数图象与图象变换
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.
●难点磁场
(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围.
●案例探究
[例1]对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),(1)求证y=f(x)的图象关于直线x=a对称;(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和.
命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目.
知识依托:把证明图象对称问题转化到点的对称问题.
错解分析:找不到问题的突破口,对条件不能进行等价转化.
技巧与方法:数形结合、等价转化.
(1)证明:设(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),又f(a+x)=f(a-x),∴f(2a-x0)=
f[a+(a-x0)]=f[a-(a-x0)]=f(x0)=y0,∴(2a-x0,y0)也在函数的图象上,而 =a,∴点(x0,y0)与(2a-x0,y0)关于直线x=a对称,故y=f(x)的图象关于直线x=a对称.
(2)解:由f(2+x)=f(2-x)得y=f(x)的图象关于直线x=2对称,若x0是f(x)=0的根,则4-x0也是f(x)=0的根,由对称性,f(x)=0的四根之和为8.
[例2]如图,点A、B、C都在函数y= 的图象上,它们的横坐标分别是a、a+1、a+2.又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a).
(1)求函数f(a)和g(a)的表达式;
(2)比较f(a)与g(a)的大小,并证明你的结论.
命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.
知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口.
错解分析:图形面积不会拆拼.
技巧与方法:数形结合、等价转化.
解:(1)连结AA′、BB′、CC′,则f(a)=S△AB′C=S梯形AA′C′C-S△AA′B′-S△CC′B
= (A′A+C′C)= ( ),
g(a)=S△A′BC′= A′C′·B′B=B′B= .
∴f(a)
●锦囊妙计
1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.
2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>