高中数学说课稿:《分类计数原理与分步计数原理》说课稿教案模板
“分类计数原理与分步计数原理”的说课提纲
一、本节内容的地位与重要性
二、关于教学目标的确定
(1)使学生正确理解两个基本原理的概念;
(3)提高分析、解决问题的能力
三、关于教学重点、难点的选择和处理
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。
根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“设疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
(一)课题导入
这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。
通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。
引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?
这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。
完成一件事,有 类办法.在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法.
(1)各分类之间相互独立,都能完成这件事;
(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。
接下来给出问题2:(出示幻灯片)
提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。
归纳得出:分步计数原理(板书原理内容)
N=m1×m2×…×mn
同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(2)根据问题的特点在确定的分步标准下分步;
(三)应用举例
例2:由数字0,1,2,3,4可以组成多少个三位整数?本题设置了4个问题:
(2)023是一个三位数吗?(百位上不能是0)
(4)怎样表述?
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.
师:什么时候用分类计数原理、什么时候用分步计数原理呢?
师:应用两个基本原理时需要注意什么呢?
课堂练习
P222:练习5,6,7.
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,从中任选一个会外语的人,有多少种选法?从中选出会英语与会日语的各1人,有多少种不同的选法?
一、本节内容的地位与重要性
二、关于教学目标的确定
(1)使学生正确理解两个基本原理的概念;
(3)提高分析、解决问题的能力
三、关于教学重点、难点的选择和处理
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。
根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“设疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
(一)课题导入
这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。
通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。
引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?
这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。
完成一件事,有 类办法.在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法.
(1)各分类之间相互独立,都能完成这件事;
(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。
接下来给出问题2:(出示幻灯片)
提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。
归纳得出:分步计数原理(板书原理内容)
N=m1×m2×…×mn
同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(2)根据问题的特点在确定的分步标准下分步;
(三)应用举例
例2:由数字0,1,2,3,4可以组成多少个三位整数?本题设置了4个问题:
(2)023是一个三位数吗?(百位上不能是0)
(4)怎样表述?
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.
师:什么时候用分类计数原理、什么时候用分步计数原理呢?
师:应用两个基本原理时需要注意什么呢?
课堂练习
P222:练习5,6,7.
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,从中任选一个会外语的人,有多少种选法?从中选出会英语与会日语的各1人,有多少种不同的选法?
编辑推荐:
下载Word文档
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>