2020江西农村信用社笔试考试:数学运算习题精解(29)
1.出租车队去机场接某会议的参会者,如果每车坐3名参会者,则需另外安排一辆大巴送走余下的50人;如每车坐4名参会者,则最后正好多出3辆空车。问该车队有多少辆出租车?( )
A.50 B.55 C.60 D.62
2.某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。( )
A.51.2 B.54.9 C.61 D.62.5
3.有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?( )
A.7 B.10 C.15 D.20
4.60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?( )
A.15 B.13 C.10 D.8
5.某三年制普通初中连续六年的在校生人数分别为:X1,X2,X3,X4,X5,X6.假设该校所有学生都能顺利毕业,那么前三年的入学学生总数与后三年的入学学生总数之差为( )
A.(X1+X2+X3)-(X4+X5+X6) B.X1-X4
C.X3-X6 D.(X3-X1)-(X6-X4)
2.【解析】C.本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61.因此该产品最初的成本为61元。
3.【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10
4.【解析】B.最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
5.【解析】C.考查整体思维。前三年入学学生人数本质上就是第三年的在校生人数X3(第三年在校生的初三、初二、初一分别为前三年的入学人数),类似的,X6即为后三年的入学人数。故答案为X3-X6.
A.50 B.55 C.60 D.62
2.某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。( )
A.51.2 B.54.9 C.61 D.62.5
3.有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?( )
A.7 B.10 C.15 D.20
4.60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?( )
A.15 B.13 C.10 D.8
5.某三年制普通初中连续六年的在校生人数分别为:X1,X2,X3,X4,X5,X6.假设该校所有学生都能顺利毕业,那么前三年的入学学生总数与后三年的入学学生总数之差为( )
A.(X1+X2+X3)-(X4+X5+X6) B.X1-X4
C.X3-X6 D.(X3-X1)-(X6-X4)
1.【解析】D.方程问题。设有x辆出租车,由题意列方程:3x+50=4(x-3),解得x=62.
2.【解析】C.本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61.因此该产品最初的成本为61元。
3.【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10
4.【解析】B.最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
5.【解析】C.考查整体思维。前三年入学学生人数本质上就是第三年的在校生人数X3(第三年在校生的初三、初二、初一分别为前三年的入学人数),类似的,X6即为后三年的入学人数。故答案为X3-X6.
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>