电话:0731-83595998
导航

必备小升初奥数数论知识点:余数问题

来源: 2017-08-22 20:04

 一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

二、同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

三、关于乘方的预备知识:

①若A=a×b,则MA=Ma×b=(Ma)b

②若B=c+d则MB=Mc+d=Mc×Md

四、被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

五、费尔马小定理:

如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

六、余数问题的例题:

例.两个整数相除得商数是12和余数是26,被除数、除数、商数及余数的和等于454,除数是().

考点:有余数的除法.

分析:根据关系式:被除数=除数×商+余数可以进行列方程进行解答.

解答:解:设除数是x,

根据:被除数=除数×商+余数,得被除数=12X+26,可列方程,

12x+26+x+12+26=454

13x+64=454

13x=454-64

13x=390

x=390÷13

x=30;

答:除数是30.

点评:本道题目有两个未知量,就是被除数与除数,但是隐含了一个关系式:被除数=除数×商+余数和题目给我们一个等量关系式,通过这些可以列方程进行解决.

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端