2020内蒙古国家电网招聘考试行测数字推理习题精解(3)
【例】2、7、14、21、294、( )
A.28 B.35 C.273 D.315
十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。
【例】1.01、1.02、2.03、3.05、5.08、( )
A. 8.13 B. 8.013 C. 7.12 D. 7.012
十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。三角形数列的规律主要是:中间=(左角+右角-上角)×N、中间=(左角-右角)×上角;圆圈推理和正方形推理的运算顺序是:先观察对角线成规律,然后再观察上下半部和左右半部成规律;九宫格则是每行或每列成规律。
30种数学运算解题技巧
十四、注意数字组合、逆推(还原)等问题中“直接代入法”的应用。
【例】一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数是原数的3倍少39。求这个三位数?
A. 196 B. 348 C. 267 D. 429
十五、注意数学运算中命题人的基本逻辑,优先考虑是否可以排除部分干扰选项,尤其要注意正确答案往往在相似选项中。
【例】两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3∶1,另一个瓶子中酒精与水的体积比是4∶1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?
A.31∶9 B.7∶2 C.31∶40 D.20∶11
十六、当题目中出现几比几、几分之几等分数时,谨记倍数关系的应用,关键是:前面的数是分子的倍数,后面的数是分母的倍数。譬如:A=B×5/13,则前面的数A是分子的倍数(即5的倍数),后面的数B是分母的倍数(即13的倍数),A与B的和A+B则是5+13=18的倍数,A与B的差A-B则是13-5=8的倍数。
【例】某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?
A.18.6万 B.15.6万 C.21.8万 D.22.3万
十七、当题目中出现了好几次比例的变化时,记得特例法的应用。如果是加水,则溶液是稀释的,且减少幅度是递减的;如果是蒸发水,则溶液是变浓的,且增加幅度是递增的。
【例】一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?
A.8% B.9% C.10% D.11%
十八、当数学运算题目中出现了甲、乙、丙、丁的“多角关系”时,往往是方程整体代换思想的应用。对于不定方程,我们可以假设其中一个比较复杂的未知数等于0,使不定方程转化为定方程,则方程可解。
【例】甲、乙、丙、丁四人做纸花,已知甲、乙、丙三人平均每人做了37朵,乙、丙、丁三人平均每人做了39朵,已知丁做了41朵,问甲做了多少朵?
A.35朵 B.36朵 C.37朵 D.38朵
十九、注意余数相关问题,余数的范围(0≤余数≤除数)及同余问题的核心口诀,“余同加余,和同加和,差同减差,除数的最小公倍数作周期”。
【例】自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?
A.不存在 B.1个 C.2个 D.3个
二十、在工程问题中,要注意特例法的应用,当出现了甲、乙、丙轮班工作现象时,假设甲、乙、丙同时工作,找到将完成工程总量的临界点。
【例】完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。现按甲、乙、丙的顺序轮班工作,每人工作一小时换班。当工程完工时,乙总共干了多少小时?
A.8小时 B.7小时44分 C.7小时 D.6小时48分
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>