长理培训•山西
导航

2020山西中烟工业招聘考试行测指导:赋值法的妙用

来源: 2020-02-29 16:00
 一、赋值法的概念

  赋值法,简而言之,就是将题目的某些量赋以特定的数值,通过明确的数值来解题,会使题目更加直观,易于解答。

  例如,题目告诉我们,有甲乙两队人在进行比赛,甲乙两队的人数比为3:2,此时我们就可以将甲队人数赋值为3,乙队人数赋值为2,当然,真正解题时没这么不是这么简单的,单单看到一句话就进行赋值,要根据题目的总体来进行考虑。

  二、重点题型

  赋值法进行使用于工程问题、行程问题、几何问题、浓度问题、经济利润相关问题之中。

  三、使用原则

  1、如果题目中没有单位,单单是一些比列关系或者说倍数,我们就可以这样简单的进行赋值,就像赋值法的概念这里面所举的例子一样。

  2、如果题干中是有单位的,不过此时单位只有一种,也就是说单位是统一的,且出现了比列的关系,我们此时可用赋值法进行简化,此时和使用原则1相似。

  3、题干中如果是数量直接的一些比列关系,此时也是和原则1一样进行简单赋值,在这里也就不多说了。

  4、如果题目中出现了分数,我们此时就不是那样简单的进行赋值了,如果赋值为分数的话,那在计算时就会有一些不必要的麻烦,也不利于我们的解题,做题目追求的就是简单明了,如果能简单的解出,谁又会去自讨苦吃呢,所以说,此时我们赋的值也需要为整数的,我们所赋的数字往往就是分母的倍数,如果分数比较多的话,那就使用到最小公倍数的概念了,此时,我们所赋的值为几个分数分母的最小公倍数。

  例如,有块地,种有三种植物,甲植物所占的亩数是总亩数的2/5, 乙植物所占的亩数是总亩数的1/3, 丙植物所占的亩数是总亩数的4/15,此时,我们可地的总面积赋值为5、3、15三个数的最小公倍数15,那么甲植物所占的亩数6,乙植物所占的亩数是5,丙植物所占的亩数是4。

  四、例题演练

  上面说了那么多的概念和原则,现在也该实际演练一把了,下面就利用几个题目,让考生对赋值法有进一步的了解。

  例一:两家超市同样的价格出一种零食。由于超市不同的营销策略,甲超市先把该零食的单价提高10%,再过一星期又打七折出售;乙超市只在两星期后以八折进行促销。这时两家超市的该零食相比,那家比较便宜?

  A、甲  B、乙  C、甲、乙相同  D、无法比较

  解析:该题目其实就是求两个超市的不同营销策略所导致零食不同的价格,我们在面对这种情况时,就可以使用本文所说到的赋值法。由于零食一开始的价格是一样的,我们可以设两家原来的售价都是100元,至于之后的价格,如下:
 

  甲超市:先提高10%,再打七折,也就是先涨价10%,再以涨价后80%出售,此时零食的售价为:

 

    100×(1+0.1)×0.7=77元


  乙超市:直接以八折促销,也就是以原价的80%出售,此时其售价为:

  100×0.8=80元

  答案显而易见,因为77小于80,所以甲超市更加便宜。

  例二:有一项工作,需要甲乙丙三个人共同工作10天完成,甲和乙两个人的工作效率是相同的,丙工作4天和甲工作5天的工作量相当,三个人同时工作1天后,由于甲乙两人有时离开了,只剩下丙一个人进行工作,那么,丙还需要多少天才能完成这项工作(  )?

  A、24  B、25   C、23    D、20

  解析:因为丙工作四天和甲工作三天的工作量相当,可以得到甲和丙的工作效率之比为4:5,由于甲和乙两个人的工作效率是相同的,甲乙丙三人的工作效率之比则为4:4:5,此时,我们可以设三人共同工作时的工作总量为130,则其工作效率分别为4,4,5,甲乙丙三人一天则完成13,剩下的工作量为117,甲就还有117÷5=23余2,所以也就是还需要24天才能够完成。
 

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端