2020天津军队文职招聘考试数量关系题型(2)
有了以上的核心运算方法,下面通过几道例题来验证奇偶法的有效性,以便在军队文职考试中取得好成绩。
【例题1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。问甲教室当月共举办了多少次这项培训?
A.8 B.10 C.12 D.15
解析:此题答案为D。根据题干可知,甲教室可坐50人,乙教室可坐45人,当月共培训1290人次,设甲教室举办了x次培训,乙教室举办了y次,则可列方程组如下:
x+y=27, ①
50x+45y=1290, ②
利用奇偶法确定方程组的解
再由①式可推知,x、y奇偶性不同,则x是奇数,选项中只有D为奇数。
【例题2】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?
A.33 B.39 C.17 D.16
解析:此题答案为D。依题意可知,答对题数+答错题数=50。
“加减法,同奇同偶则为偶”,50为偶数,则答对题数与答错题数同为奇数或同为偶数,二者之差也应是偶数,选项中只有D是偶数。
【例题3】哥哥5年后的年龄和弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍。哥哥今年( )岁。
A.10 B.12 C.15 D.18
解析:此题答案选C。根据题目条件“哥哥5年后和弟弟3年前的年龄和为29岁”,可得哥哥和弟弟现在的年龄和是29-5+3=27岁,27是奇数,两个人的年龄和为奇数,则两人年龄必然一奇一偶;同时,“弟弟的年龄是年龄差的4倍”,也就意味着弟弟的年龄一定是一个偶数,所以哥哥的年龄一定是一个奇数,观察答案,只有C选项是奇数。故选C。
综上所述,在军队文职考试中,求解数学运算题时,如果题目中涉及到了多个数字的差和关系,我们可以考虑奇偶法,借助选项数字的奇偶性,达到快速解题的目的。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>