2017军队文职行测考试:特值法在工程问题中的常见应用
一、当题干中含有若干个主体完成整个工程所需时间,可以设工作总量为“时间们”的最小公倍数
【例题1】一项工程,甲单独做需要6天,乙单独做需要3天,请问甲乙合作需要多少天完成?
A. 1 B.1.5 C.2 D. 2.5
【答案】C
【解析】设工作总量为6和3的最小公倍数6,则甲和乙的工作效率分别为1和2。因此,甲乙合作的效率为1+2=3,则所求时间为6÷3=2天。选C。
【例题2】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:
A.12天 B.10天 C.8天 D.9天
【答案】B
【解析】根据题干“甲一人做完需30天”以及“乙、丙合作完成需15天”,可设工作总量为30和15的最小公倍数30,则甲的工作效率为1,乙、丙效率之和为2,所以甲、乙、丙三人的效率和为3。因此,所求天数为30÷3=10天。选B。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>