2017军队文职行测考试:假币问题答题思路梳理(2)
例2:8个一元真币和1个一元假币混在一起,假币与真币外观相同,但比真币略轻。问用一台天平最少称几次就一定可以从这9个硬币中找出硬币?
A.1 B.2 C.3 D.4
解析:9枚硬币,3个3个为一组,均分为3组,分别编号A、B、C。
第一次:任意拿出两组,比如A和B称
1)若天平平衡,则假币在C组中;
2)若天平不平衡,则假币在轻的一端。(即第一次一定可以找到假币所在的组)
第二次:在假币所在的组中,再次进行均分,3枚硬币平均分为三组,每组一枚硬币,任意拿出两组硬币进行称量:
1)若平衡,则假币为剩下的那枚;
2)若不平衡,则假币在较轻的的天平那一端。
综上所诉,最少需要称量两次。
另解:31<9≤32,故N=2,正确答案为B。
例3:某人有27枚银元,其中一枚是轻一些的假银元,用天平至少称几次,就一定能找到假银元?
A.3 B.4 C.5 D.6
解析:32<27≤33,故N=3,正确答案为A。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>