电话:0731-83595998
导航

2018军队文职数量关系考点实例分析:三角形两边之和大于第三边

来源: 2018-08-05 22:37

   给小伙伴们解释一下就是△ABC中AB+BC>AC。其实这条定理是第一条定理的特殊情况,三角形的第三边AC可以看成是两点间的线段,AB与BC的和看成A、C两点间的折线,两点间的折线一定大于两点间的线段。这条定理也可以理解成:如果三条线段其中的任意两条的和不能大于第三条的话,这三条线段就不能组成三角形。

  特别注意:“三角形两边之和大于第三边”为两点之间线段最短的引申内容,不能使用它来证明“两点之间线段最短”

  接下来,我们进行实例分析:

  【例2】(2010-国家-53)科考队员在冰面上钻孔获取样本,测量不同孔心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔( )

  A.4 B.5

  C.6 D.7

  【数量关系解题技巧分析】根据题意,如果使钻孔个数尽量少,那么就应该满足题目中出现的这些孔间距离的同时尽量让这些长度能共用同一孔,6条线段如果可以组成下图,那就可以选最少的4个孔了。

  问题是这6条线段能不能组成如上图那样的封闭图形呢?答案是不能。因为我们可以看出要想组成封闭图形首先必须能构成三角形,而1米、3米、6米、12米、24米、48米这6个数字中任意选三个,它们都不能完全满足任意两数之和大于第三个数,所以它们不能构成三角形,就不能构成封闭图形了。要想使孔数尽量少,也要尽量应用公共孔,如下图或直线排布,或者散射状排布,无论哪种都需要7个孔才行,选择D选项。

编辑推荐:

下载Word文档

温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)

网络课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

相关推荐
图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端