长理培训•云南
导航

2020云南军队文职考试行测答题技巧—数量关系之方阵问题

来源: 2020-03-24 16:35

方阵问题是指许多人或物按一定条件排成正方形(方阵),根据方阵找出规律,进而解决问题。在解决问题时,首先要搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系,再选择方阵问题中常用的公式及性质。

  方阵相邻两层人数相差8,此处需注意一种特殊情况,当实心方阵的最外层每边人数为奇数时,从内到外每层人数依次是1、8、16、24…;

  实心方阵总人数=最外层每边人数的平方

  空心方阵总人数利用等差数列求和公式求解(首项为最外层总人数,公差为-8的等差数列)

  方阵每层总人数=方阵每层每边人数×4-4;

  在方阵中若去掉一行一列,去掉的人数=原来每行人数×2-1;

  在方阵中若去掉二行二列,去掉的人数=原来每行人数×4-2×2。

  在明白了方阵问题的基本原理之后,我们会发现方阵问题并不难理解,关键就是能够将已经总结出的公式会在具体题目中的使用,所以接下来我们通过几个例题深刻理解方阵问题。

  【例题1】五年级学生分成两队参加广播操比赛,排成甲、乙两个实心方阵,其中甲方阵最外层每边的人数为8.如果两队合并,可以另排成一个空心的丙方阵,丙方阵最外层每边的人数比乙方阵最外层每边的人数多4人,且甲方阵的人数正好填满丙方阵的空心。五年级一共有多少人?

  A.200 B.236 C.260 D.288

  【答案】C.

  【参考解析】此题答案为C。空心的丙方阵人数=甲方阵人数+乙方阵人数,若丙方阵为实心的,那么实心的丙方阵人数=2×甲方阵人数+乙方阵人数,即实心丙方阵比乙方阵多8×8×2=128人。丙方阵最外层每边比乙方阵多4人,则丙方阵最外层总人数比乙方阵多4×4=16人,即多了16÷8=2层。这两层的人数即为实心丙方阵比乙方阵多的128人,则丙方阵最外层人数为(128+8)÷2=68人,丙方阵最外层每边人数为(68+4)÷4=18人。那么,共有18×18-8×8=260人。

  【例题2】参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

  A.196 B.225 C.289 D.324

  【答案】C。

  【参考解析】去掉一行、一列的总人数=去掉的每边人数×2-1,去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17.方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289人。

  相信通过例题的讲解,广大考生对于方阵问题会得到更深刻的理解,方阵问题在近几年考试当中虽然出现较少,但是也需要将这类问题有所了解才可以,解题时要先确定方阵的类型,搞清方阵中一些量(如层数、最外层人数、最里层人数和总人数)之间的关系,然后套用正确的公式求解。

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端