长理培训•黑龙江
导航

2020黑龙江军队文职招聘理工学专业备考:常微分方程

来源: 2019-12-21 16:36

【无穷级数】

主要测查应试者对级数理论的掌握程度。要求应试者理解常数项级数、函数项级数、幂级数、级数的收敛与发散、绝对收敛与条件收敛、函数项级数的收敛域与和函数、傅里叶级数、函数项级数的一致收敛性等概念;掌握正项级数及其审敛法、交错级数及其审敛法,一致收敛级数的性质、函数项级数的收敛域求法、幂级数的收敛半径、收敛区间和收敛域、幂级数在其收敛区间内的基本性质、幂级数的和函数的求法、函数展开成幂级数、函数展开成傅里叶级数等基本理论和应用;了解函数展开成幂级数的应用、傅里叶级数复数形式。

本章内容主要包括数项级数、函数项级数、幂级数、傅里叶级数。

第一节 数项级数

一、数项级数

数项级数的定义;部分和的定义;数项级数的收敛与发散;几何级数与P级数;收敛级数的基本性质;柯西收敛原理。

二、正项级数审敛法和交错级数

比较审敛法;比较审敛法的极限形式;根值审敛法;比值审敛法。

三、任意项级数

交错级数;莱布尼兹定理;绝对收敛和条件收敛;绝对收敛级数的性质;绝对收敛级数的柯西乘法。

第二节 幂级数

一、函数项级数

函数项级数的定义;函数项级数的收敛与发散;函数项级数的收敛域;函数项级数的一致收敛性;一致收敛级数的基本性质。

二、幂级数

幂级数的收敛、发散与绝对收敛;幂级数的收敛性质;阿贝尔定理;幂级数的收敛半径、收敛区间;幂级数的和函数的运算及性质。

三、函数展开为幂级数

基本初等函数的麦克劳林展式;用间接法将初等函数展开为幂级数;近似计算;微分方程的幂级数解法;欧拉公式。

第三节 傅里叶级数

一、傅里叶级数的概念

三角级数;三角函数系的正交性;周期为2π的函数的傅里叶级数;正弦级数与余弦级数。

二、一般周期函数的傅里叶级数

函数的周期延拓;周期为21的函数的傅里叶级数;傅里叶级数复数形式

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端