2020江西军队文职考试理工学专业:函数、极限和连续
【函数、极限和连续】
函数、极限和连续部分主要测查应试者对极限理论和函数的连续性理论的掌握程度。要求应试者理解集合、函数、数列极限、函数极限、无穷小量、无穷大量、函数的连续性、函数的间断点的概念;掌握函数的特性(有界性、单调性、周期性和奇偶性)、特殊的函数(反函数、复合函数、分段函数)、基本初等函数的性质、数列极限的性质和四则运算法则、函数极限的性质和四则运算法则、极限存在的两个重要准则、两个重要的极限、无穷小的阶和无穷小的比较、连续函数的性质、初等函数的连续性、闭区间上连续函数的性质等基本理论和相应解决问题的基本方法;了解函数的一致连续性的概念和一致连续性定理。
函数、极限和连续的内容主要包括映射、数列、函数、极限、无穷大与无穷小、初等函数、函数的连续性。
第一节 函数
一、函数的概念
集合;邻域;集合的运算;映射;逆映射;复合映射;函数;函数的表示法;几个具体特殊函数;分段函数。
二、函数的特性
单调性;奇偶性;有界性;周期性。
三、函数的运算
函数的四则运算;反函数;反函数的图像;复合函数。
四、基本初等函数与初等函数
幕函数;指数函数;对数函数;三角函数;反三角函数;初等函数。
第二节 极限
一、数列极限的概念
数列;数列极限;极限的几何意义。
二、数列极限的性质与运算
唯一性;有界性;保号性;四则运算法则;收敛数列与其子列的关系;
三、函数极限的概念
函数在一点处极限的定义;左、右极限及其与极限的关系;趋于无穷时函数的极限;函数极限的几何意义。
四、函数极限的性质与运算
四则运算法则;函数极限的性质;复合函数求极限法则。
五、无穷小量与无穷大量
无穷小量与无穷大量;无穷小量与无穷大量的关系;无穷小量的性质及四则运算;无穷小量的阶;高阶、同阶、等价无穷小量。
六、极限存在准则与两个重要极限夹逼定理;单调有界收敛准则;柯西(Cauchy)极限存在准则;两个重要的极限。
第三节 连续
一、函数连续的概念
函数在一点处连续;左连续与右连续;函数在一点处连续的充分必要条件;连续函数;函数的间断点及其分类;连续函数的四则运算;复合函数的连续性;反函数的连续性;初等函数的连续性。
二、闭区间上连续
函数的性质有界性定理;最大值最小值定理;零点定理;介值定理;函数的一致连续性;闭区间上连续函数的一致连续性定理。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>