空间和Bloch空间之间的叠加算子
关键词:Bloch空间;��Q��K��空间;叠加算子��
中图分类号:O174文献标识码:A
[WT]文章编号:1672-1098(2011)02-0038-03�おおお�
收稿日期:2011-01-10��
作者简介:周继振(1976-),男,安徽肥西人,讲师,在读博士,主要从事函数空间和算子理论的研究。��
[WT3BZ]Superposition Operators between��Q��K��and Bloch Space��
ZHOU Ji-zhen��
(School of Sciences, Anhui University of Science and Technology, Huainan Anhui 232001, China)��
Abstract:Let���吉�be an entire function. A superposition operator��S���吉�induced by���吉�, defined by ��S���迹�f)=��(f)��. The author study the boundedness of superposition operator in the paper. A sufficient and necessary condition is given for the superposition operator between ��Q��K��and the Bloch space.��
Key words:Bloch space;��Q��K��spaces; superposition operator�お�
根据文献[5]����209��的引理2, 可构造出一个具有如下性质的域Ω:��
1) Ω是单连通的;��
2) Ω保存着无限折线��L=∪∞n=1[w����n-1��,w��n],其中[w����n-1��,w��n]表示连接w����n-1��和w��n�У南叨危华�
3) 若��f是一个将D�П浠坏溅傅�Riemann映射,则��f∈B�В华�
4) 对于任意一个��L上的点w�В�其到Ω边界的距离dist(��w,�氮Е�)=��δ��。��
假设��f是一个将D��变换到Ω的Riemann映射且满足��f(0)=0。 因为f是B空间里的一个单叶函数, 运用文献[
注释若��K满足条件式(3), 则Q��K是B�У恼孀蛹�,见文献[1]����1 238��的定理2��3。�お�
参考文献:�お�
[1] ESSEN M, WULAN H. On analytic and meromorphic functions and spaces of ��Q��K��type[J].Illinois J. Math., 2002, 46:1 233-1 258.��
[2] ESSEN M, WULAN H, XIAO J. Several function-theoretic characterizations of Mobius invariant ��Q��K��spaces[J]. J. Funct. Anal., 2006, 230: 78-115.��
[3] XIAO J. Geometric ��Q��p��functions[M]. Basel-Boston-Berlin, Birkhauser Verlag, 2006:25.��
[4] XIAO J. Holomorphic ��Q��Classes[M].Berlin, Springer LNM, 2001.��
[5] ALVAREZ V, MARQUEZ M, VUKOTIC D. Superposition operation between the Bloch space and Bergman space[J]. Ark. Mat. 2004, 42:205-216.��
[6] CAMERA G, GIMENEZ J. The nonliner superoposition operators acting on Bergman space[J].Compos. Math., 1994, 93:23-35.��
[7] XIONG C. Superposition operators between ��Q��p�� and Bloch-type spaces[J]. Complex. Var, 2005, 50: 935-938.��
[8] XU W. Superposition operators on Bloch-type space[J]. Comput. Methods Funct. Theory,2007,7:501-507.��
[9] GIRLA D, MARQUEZ M.Superposition operators between ��Q��p��spaces and Hardy sapces[J]. J. Math. Anal. Appl, 2010, 364:463-472.��
[10] WULAN H. Criteria for an analytic function to belong to the ��Q��K��spaces[J].Acta.Math.Sci.,2009,29:33-44.��
[11] POMMERENKE CH. Boundary behaviour of conformal maps[M].Grundlehren Math. Wiss, 299, Berlin, Spring-verlag, 1992:17.��
[12] LOU Z.Composition operators on Bloch type spaces[J].Analysis,2003,23:81-95.�お�
(责任编辑:何学华)
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>