2020山西农信社招聘考试行测备考数学运算:求解运算难题
一、借助核心公式,将题目所求设为未知数
例:有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。现在用水桶吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。现在需要5分钟吊干,每分钟应吊多少桶水?( )
A. 8
B. 9
C. 10
D. 11
答案及解析:本题答案选D。解析过程如下:本题属于“牛吃草问题”。“牛吃草问题”的核心公式是:y=(N-x)×T。设水井中原有水量为y,每分钟出水量为x,5分钟应安排N个水桶。根据题意可列如下方程组:
y=(4-x)×15;------(1)
y=(8-x)× 7,------(2)
y=(N-x)× 5,------(3)
方程(1)(2)联立解得:y=52.5,x=0.5。将结果带入方程(3)中,得:N=11。故选D。
例:取甲种硫酸300克和乙种硫酸250克,再加水200克,可混合成浓度为50%的硫酸;而取甲种硫酸200克和乙种硫酸150克,再加上纯硫酸200克,可混合成浓度为80%的硫酸。那么,甲乙两种硫酸的浓度各是多少?( )
A.75%,60%
B.68%,63%
C.71%,73%
D.59%,65%
答案及解析:本题答案选A。解析过程如下:本题是一道典型的浓度问题。浓度问题的核心公式是:混合溶液浓度=混合后总溶质÷混合后总溶液×100%。根据题目所求假设甲、乙两种硫酸的浓度各是x、y,可列如下方程:
(300x+250y)÷(300+250+200)=50% ------(1)
(200x+150y+200)÷(200+150+200)=80%------(2)
方程(1)(2)联立得:x=75%,y=60%。故选A。
点评:上述两题分别借助了牛吃草问题的核心公式和浓度问题的核心公式,将题目所求设为未知数,从而列出了所需要的方程。因此,考生在备考中一定要熟悉每一种题型的核心公式,这是列方程的关键。
二、寻找题目中的等量关系,将需要用到的数据设为未知数
例:一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为( )。
A.3400元
B.3060元
C.2845元
D.2720元
答案及解析:本题答案选C。解析过程如下:题目假设了两种销售模式,很明显,这两种销售模式所对应的成本(成本=售价-利润)是一样的,可借助这个等量关系列恒等式。假设售价是x元,则有:成本=0.9x-215=0.8x-(-125),解得:x=3400。因此,这种打印机的进货价是0.9×3400-215=2845元。故选C。
例:将大米300袋、面粉210袋和食用盐163袋按户分给某受灾村庄的村民。每户分得的各种物资均为整数袋,余下的大米、面粉和食用盐的袋数之比是1:3:2,则该村有多少户村民?( )
A. 7
B. 9
C. 13
D. 23
答案及解析:本题答案选D。解析过程如下:根据题目条件“余下的大米、面粉和食用盐的袋数之比是1:3:2”可知,“余下的大米+余下的食用盐=余下的面粉”,这个等量关系式就是列方程的依据。假设该村有居民x户,每户分得大米、面粉、食用盐各a、b、c袋。借助题目的等量关系式可列如下方程:(300-ax)+(163-cx)=(210-bx),方程化简为:253=(a-b+c)x,根据题目条件“每户分得的各种物资均为整数袋”可得(a-b+c)是整数,故253应为x的整倍数,用代入法,只有选项D符合条件。
点评:上述两题均是结合已知条件,在题目中找到了等量关系,将需要用到的数据设为未知数,从而列出方程求解。尤其是例4,虽然假设了多个未知数,但是并没有将这些未知数一一求解,这一“设而不解”的做法是方程法的重要思想,值得重点关注。当然,随着考试难度的增加,不定方程和不等式也将会被引入到考题中,考生也要有这方面的准备。
温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)
点击加载更多评论>>