长理培训•山西
导航

2020南方电网招聘考试行测备考数学运算:方阵问题经典题型解析

来源: 2020-01-31 18:42

方阵问题

  学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果 行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

  核心公式:

  1.方阵总人数=最外层每边人数的平方(方阵问题的核心)

  2.方阵最外层每边人数=(方阵最外层总人数÷4)+1

  3.方阵外一层总人数比内一层总人数多2

  4.去掉一行、一列的总人数=去掉的每边人数×2-1

  例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?

  A.256人 B.250人 C.225人 D.196人 (2002年A类真题)

  解析:方阵问题的核心是求最外层每边人数。

  根据四周人数和每边人数的关系可以知:

  每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

  方阵最外层每边人数:60÷4+1=16(人)

  整个方阵共有学生人数:16×16=256(人)。

  所以,正确答案为A。

  例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

  分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:

  去掉一行、一列的总人数=去掉的每边人数×2-1

  · · · · ·

  · · · · ·

  · · · · ·

  · · · · ·

  · · · · ·

  解析:方阵问题的核心是求最外层每边人数。

  原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17

  方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)

  例3 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是:

  A.1元 B.2元 C.3元 D.4元 (2005年中央真题)

  解析:设当围成一个正方形时,每边有硬币X枚,此时总的硬币枚数为4(X-1),当变成三角形时,则此时的硬币枚数为3(X+5-1),由此可列方和为

  4(X-1)=3(X+5-1)解得

  X=16 总的硬币枚数为60,则总价值为3元。

  所以,正确答案为C。

  5、某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?

温馨提示:因考试政策、内容不断变化与调整,长职理培网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长职理培)

直播课程 新人注册送三重礼

已有 22658 名学员学习以下课程通过考试

网友评论(共0条评论)

请自觉遵守互联网相关政策法规,评论内容只代表网友观点!

最新评论

点击加载更多评论>>

精品课程

更多
10781人学习

免费试听更多

图书更多+
  • 电网书籍
  • 财会书籍
  • 其它工学书籍
拼团课程更多+
  • 电气拼团课程
  • 财会拼团课程
  • 其它工学拼团
相关推荐
热门排行

长理培训客户端 资讯,试题,视频一手掌握

去 App Store 免费下载 iOS 客户端