理学论文:如何使数学教学成为数学活动的教学
前苏联著名教育家斯托利亚尔在他所著的《数学教育学》一书中指出:"数学教学是数学活动的教学(思维活动的教学)。"这种提法,是符合数学教育发展要求的,在数学教育改革的今天,使数学教学成为数学活动的教学非常必要。
所谓数学活动是指把数学教学的积极性概念作为具有一定结构的思维活动的形式和发展来理解的。按这种解释,数学活动教学所关心的不是活动的结果,而是活动的过程,让不同思维水平的儿童去研究不同水平的问题,从而发展学生的思维能力,开发智力。
那么,要想使数学教学成为数学活动的教学主要应考虑哪几个问题呢?下面谈谈笔者一些想法。
一、考虑学生现有的知识结构
知识和思维是互相联系的,在进行某种思维活动的教学之前,首先要考虑学生的现有知识结构。
什么是知识结构?一般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从一定角度出发,用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这就是知识结构。在教学中只有了解学生的知识结构,才能进一步了解思维水平,考虑教新知识基础是否够用,用什么样的教法来完成数学活动的教学。
例如:在讲解一元二次方程[a(x)2+bx+c=0 a≠0]时,讨论它的解,须用到配方法,或因式分解法等等,那么上课前教师要清楚这些方法学生是否掌握,掌握程度如何,这样,活动教学才能顺利进行。
二、考虑学生的思维结构
数学教学是数学思维活动的教学,进行数学教学时自然应考虑学生现有的思维活动水平。
心理学早已证明,思维能力及智力品质都随着青少年年龄的递增而发展,学生的思维水平在不同的年龄阶段上是不相同的。斯托利亚尔在《数学教育学》中介绍了儿童在学习几何、代数时的五种不同水平,在这五个阶段上,学生掌握知识,思考方式、方法,思维水平都有明显差异。因此,要使数学教学成为数学活动的教学必须了解学生的思维水平。下面谈谈与学生思维水平有关的两个问题。
1.中学生思维能力之特点
我们知道,中学生的运算思维能力处于逻辑抽象思维阶段,尽管思维能力的几个方面的发展有所先后,但总的趋势是一致的。初一学生的运算能力与小学四、五年级有类似之处,处于形象抽象思维水平;初二与初三学生的运算能力是属于经验型的抽象逻辑思维;高一与高二学生的运算能力的抽象思维,处在由经验型水平向理论型水平的急剧转化的时期。从概括能力、空间想象能力、命题能力和推理能力四项指标来看,初二年级是逻辑抽象思维的新的起步,是中学阶段运算思维的质变时期,是这个阶段的关键时期。高一年级是逻辑抽象思维阶段中趋于初步定型的时期,高中之后,学生的运算思维走向成熟。总的来说,中学生思维有如下特点。
首先,整个中学阶段,学生的思维能力得到迅速发展,他们的抽象逻辑思维处于优势地位,但初中学生的思维和高中学生的思维是不同的。初中学生的思维,抽象逻辑思维虽然开始占优势,可是在很大程度上还属于经验型,他们的逻辑思维需要感性经验的直接支持。而高中学生的抽象逻辑思维则属于理论型的,他们已经能够用理论作指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。也只有在高中学生那里,才开始有可能初步了解对立统一的辩证思维规律。
其次,初中二年级是中学阶段思维发展的关键期。从初中二年级开始,中学生抽象逻辑思维开始由经验型水平向理论型水平转化,到高中一、二年级,这种转化初步完成,这意味着他们的思维趋向成熟。这就要求教师,要适应他们思维发展的飞跃时期来进行适当的思维训练,使他们的思维能力得到更好的发展。
2.学习数学的几种思维形式
(1)逆向思维。与由条件推知结论的思维过程相反,先给出某个结论或答案,要求使之成立各种条件。比如说,给一个浓度问题,我们列出一个方程来;反过来,给一个方程,就能编出一个浓度方面的题目。后者就属于逆向型思维。
(2)造例型思维。某些条件或结论常常要用例子说明它的合理性,也常常要用反例证明其不合理性。根据要求构造例子,往往是由抽象回到具体,综合运用各种知识的思考过程。例如:试求其反函数等于自身的函数。
(3)归纳型思维。通过观察,试验,在若干个例子中提出一般规律。
(4)开放型思维。即只给出研究问题的对象或某些条件,至于由此可推知的问题或结论,由学生自己去探索。比如让学生观察y=sinx的图象,说出它的主要性质,并逐一加以说明。
了解了学生的思维特点和数学思维的几种主要形式,在教学中,结合教材的特点,运用有效的教学方法,思维活动的教学定能收到良好效果。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>