理学论文:数学建模思想融入医药高等数学教学方法的探讨
恩科斯说过,数学是研究现实世界中的数量关系和空间形式的科学。现实正是如此,数学思想已经成为现代科学技术发展的原动力,无论是微观的领域还是宏观的决策都离不开数学。古希腊哲学家柏拉图在雅典学院门口书写:不懂几何学的人不得入内[1]。也曾有一位学者这样表达,任何领域的高科技都是一种数学技术的表现。从古到今,数学一直被认为是不能缺少的文化、技术。
1医药高等数学教学的现状
医药高等数学是高等医药学院的一门重要的基础课程,它开设的目的是使学生的创新思维能力、数学逻辑推理能力得以加强,为相关专业课程的学习打下坚实的基础,进一步培养学生对实际问题的分析、解决能力。但由于医学院校学生的数学基础明显弱于综合性大学学生的基础,又因为它是一门公共基础课,学校开设的学时少,几乎没有相配套的数学实验。同时,传统的数学教学模式普遍是过分强调数学的逻辑性和严密性,注重理论推导,忽视理论背景和实际应用,使得学生知其然而不知其所以然,不知如何真正从实际问题中提炼,也不知如何解决实际问题。从而使得学生感到学习数学的枯燥,导致学生主动应用数学的意识淡薄,对后续课程仅仅停留在表面理解,不利于学生对所学内容提出创造性的问题,教学效果很不理想。
2数学建模思想
数学模型[2-3]可以描述为:对于现实世界的一个研究对象,为了一个特定的目的,根据对象的内在规律,做出必要的简化假设,运用适当数学工具,得到的一个数学结构。它是以数学符号、图形、程序等为工具,对现实问题或实际课题的内在规律和本质属性进行抽象而又简洁的描述。它是将现象加以归纳、抽象的产物,源于现实而又高于现实,完成实践-认识-实践这一辩证唯物思想。数学建模是对模型的叙述、建立、求解、分析和检验的全过程,它也是学数学-做数学-用数学的过程,从而体现了学用统一的思想。数学建模关键在于如何建立模型,同一个实际问题可以有不同的思想来建立,同一模型有时也可以描述不同的实际问题。实际问题的错综复杂使得没有一个模型完全与实际一致,为了更好地描述实际问题,常常需要不断地修改数学模型,让其更接近现实问题。虽然模型没有统一模式,但这并不能说可以随心所欲,毫无规律可循,可以从不同的角度来寻找内在规律,"横看成岭侧成峰,远近高低各不同"是对建模过程的最好描述,建模过程如下。
2.1调查准备 建模前,要深入了解问题的背景和内在规律,明确建模的目的,收集掌握基本的数据,为建立数学模型做前期的准备工作。
2.2合理假设,抽象、简化 根据目的,大胆、理性、合理地简化客观问题的假设,抓问题的本质,忽略次要因素。
2.3寻找规律,建立模型 在假设的条件下,用数学的语言、符号来描述各变量间的关系,建立相应的数学结构,构成数学模型。尽量采用简单的数学工具、方法建模,以便它人使用,也可以借用已有的模型方法。
2.4求解模型 用各种数学方法、数学软件(Matlab、Mathematica、Spss等)对模型求解。
2.5模型分析、检验、修改 不同的假设会直接造成不同的结果,若假设不合理,则结果很可能不符合实际现象,因此需要对模型的解进行分析,分析模型结果的误差和稳定性等。针对实际问题,进行比较、检验数学模型的适用性时,如果结果与实际情况有较大的出入,那么就需要修改、补充假设,重新建模,直到结果满意为止。
3建模思想融入医药高等数学教学的意义
在高科技、高信息的今天,数学建模用在了各个领域。例:医药、股票、保险、效益、预测、模拟、管理、排队等等。对于医药学生来说,由于数学类课程体系不完整,学生数学知识欠缺,所以单独开设其课程有一定的难度。作为教师不乏可以把与所学有限课程的知识点与建模联系起来,把建模思想融入医药高等数学的教学过程中[4-5],同时将数学学习尽量与丰富多彩的现实生活联系起来,学以致用,让学生感受生活中处处有数学素材,数学与生活是息息相通的,而不是远离生活。同时也让学生感受到,本专业的实际问题大多都需要数学的支持,且数学确实是解决科研问题的核心工具。因此,建模思想融入医药高等数学的教学教法中,有其深远的意义。
3.1有助于提高学生的学习数学的兴趣 《论语》中有这样一句话:"知之者不如好之者,好之者不如乐之者。" 爱因斯坦曾说过:哪里没有兴趣,哪里就没有记忆;也曾指出:好奇的目光常常可以看到比他所希望看到的东西更多。由此可见,如何提高学生学习兴趣是教师教学过程中的核心内容之一。在高等数学的教学中,可以对已经讲过的概念、理论融入模型思想,把比较抽象、枯燥的内容变得更形象化、直观化,从而提高学生的兴趣,使学生感到学有所用。例如:讲到函数连续理论时,教师可以让学生尝试建立模型:在起伏不平(连续)的地面上,方桌是否可以摆放平稳(桌子问题模型)。讲解微分方程时,可以建立的模型:减肥问题、传染病传播问题、药代动力学问题等等。
3.2有助于培养学生的创新思维 大量的数学概念、公式,很容易造成数学的教学偏重于纯粹的数学计算,远离现实生活。这很不利于学生对数学概念、理论的理解,不利于启发学生自觉、主动运用数学方法来解决各种各样的实际问题,不利于培养学生的观察力和创造性。但数学建模的过程弥补了这些不足,建模问题是一个没有现成、必然的答案和模式,只能发挥自己的洞察力、想象力和创造力去解决。例如,涉及速度、边际、弹性问题时,应该想到很可能会用到导数和微分;涉及最值问题时,很可能需要用到优化决策的内容。另外,教师也可以在原来模型的基础,进一步改变假设条件,拓展学生的创新能力。例如:对于上面所提到桌子问题,如果把条件"方桌"改为"长方形",结果如何?对于经典的数学模型"一笔画问题",可以拓展到邮递线路问题[3]等等。这些拓展问题,都能够极大地提高学生的创新能力。 3.3有助于提高学生自主学习的能力 要解决建模问题以及模型拓展问题,都需要学生在课堂下大量查阅资料,以及学习相关内容的课程,才有可能解决这些有趣而又棘手的题目,久而久之,潜移默化之中就提高了自学能力。例如:学生欲解决药代动力学的问题,必须要先清楚药物的代谢过程及途径。
3.4有助于提高学生的动手、操作软件的能力 数学模型的求解过程,大多是需要运用计算机编程来解决。虽然学生开设有计算机课程,但掌握的仅仅是一些基本语句、命令,实际编程能力较差。在求解数学建模的过程中,学生必须综合运用所学的知识,编写相应的程序,求出模型的数值解,从而促进学生的动手操作软件的能力。
4如何将建模思想融入医药高数的教学
4.1在概念讲授中应用建模思想 高等数学课本中函数、极限、导数、微分、积分等概念都是从客观事物的某种数量关系或空间形式中抽象出来的数学模型。在教学时可以把它们的"原始形态"展现出来或是从学生感兴趣的例子当中把这些概念引出来,让学生认识到概念的合理性及其应用的方向。比如在讲授导数的概念时,可以给出自由落体变速直线运动的瞬时速度模型,模型建立过程中,可以借助已学的匀速直线运动速度公式,由师生共同讨论分析,引出导数的概念,使学生明白导数是从变化率问题中提炼出来的。有了导数的定义之后,该瞬时速度模型以及医药专业领域的药物分解速率模型、体内血药浓度变化率模型等等也都迎刃而解了。
4.2在定理证明中应用建模思想 高等数学中定理的证明是教学过程的一大难点。教材中的很多定理在最初产生时是有数学背景的,但经过抽象,经过逻辑化、严谨化之后,却失去了其原本的"味道",学生学起来不知道为什么需要这些定理,发明者的原始想法也很可能被隐藏在逻辑推理之中。所以有必要在定理的证明中融入建模思想,比如:连续函数根的存在定理-引入蛋糕二分问题(对于一块边界形状任意的蛋糕,能否过蛋糕上任意一点切一刀,使切下的两块蛋糕面积相等?)[7]。通过这样一个实际问题的建模过程,学生可以体会出抽象的数学定理与实际生活的联系。
4.3在习题中应用建模思想 现前,高等数学的习题大多是干瘪的式子、纯粹的计算,涉及到的应用很少,这种题目不利于培养学生的创新能力,激发不起学生做作业的主观能动性。为弥补这一缺憾,可补充一些开放性的应用题或是学生专业领域的题目,要求学生给出从提出问题、分析问题、建立模型、求解模型到模型的分析、检验、推广的全过程,这种方法可以给予学生更大的空间,巩固课堂教学的同时也可以培养学生的科研能力。
5建模教学方法的多样化
数学建模思想融入数学教学中,同样需要一定的教学方法,根据不同的教学内容,可以采用案例教学法、讨论教学法、分层教学法等等[6]。
6总结及注意问题
对于高等医药学校的学生来说,由于数学基础相对较差,所以应该把数学建模思想融入医药高等数学,而不是单独开设一门主干课课程,也不能采用形而上学的方式,机械的对所有概念、理论都给出数学模型的案例。数学模型的建立,要循序渐进,由特殊到一般,由简单到复杂,力争有机地把所讲的内容与数学建模思想相结合,且所选的模型题目也应多结合现实生活,这样学生更容易产生兴趣,进一步提高学生学习的积极性和主动性。医药高等数学中融入数学建模思想,学生接受数学建模的训练,不仅是学生对实际问题的挑战,也是教师对培养学生综合能力的手段。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>