医药学论文:研究骨密度在股骨头缺血坏死后塌陷预测中的应用
摘要: 目的 研究股骨头松质骨弹性模量、骨密度及骨小梁形态及结构的相关性,以期用体外测定骨密度早期预测股骨头坏死后塌陷。方法 取股骨头承重区松质骨,测量其弹性模量、骨密度值,应用图像分析系统测量组织形态学分析指标,进行相关回归分析,分析骨密度与弹性模量及组织形态学指标之间的相关性及相关关系。结果 松质骨骨密度与弹性模量之间呈二次曲线相关关系;骨密度与组织形态学分析指标之间有很好的相关性。结论 应用骨密度能较好的反映股骨头生物力学性能及松质骨细微结构,理论上可以应用于股骨头坏死后塌陷的预测。
关键词: 骨密度;弹性模量;组织形态学;股骨头缺血性坏死
本实验测量股骨头松质骨骨密度(bone mineral density,BMD)、弹性模量及组织形态学参数,研究BMD与骨弹性模量及组织形态学分析指标之间的相关性及相关系数,以BMD反映股骨头的生物力学性质及骨小梁形态。通过体外动态测定股骨头松质骨BMD,间接反映股骨头的生物力学性质及骨小梁形态及结构的变化趋势,为临床早期预测股骨头坏死后塌陷的研究提供理论依据。
28 例股骨头缺血性坏死、髋关节骨关节病或新鲜股骨颈骨折,需行全髋关节置换术者作为研究对象,其中男17 例,女11 例;年龄32~76 岁,平均(63.1±8.3) 岁。无甲状腺或甲状旁腺机能亢进或减退、肝肾疾病等。
2.1 取材 在全髋关节置换手术中取出股骨头后,立即用环钻在股骨头承重区沿力线方向经股骨头中心钻取松质骨,以锋利手术刀将两端切成平行并与纵轴垂直,标本长度约为(25±0.5) mm,再用细砂纸将两端仔细打磨平整。精确测量直径及长度后储存于-70℃低温冰箱中备用[4]。整个标本采取及制作过程在2 h内完成。
2.2.1 弹性模量测定 将股骨头标本从低温冰箱中取出后,置于22~25℃室温中约3 h进行复温。应用万能压力测试机进行非损伤加载。加载速率为0.002 m/s,最大载荷为0.15 kN,最大变形为7%,变形测量精度为0.005 mm,载荷测量精度为1 N[5]。每份标本测量3次,取第3次测量值。每次测量前后及间歇期均将标本浸泡于室温生理盐水中。计算弹性模量。弹性模量计算公式为:E=(F/S)×(L/ΔL)[6],各数据均采用国际单位制(E为弹性模量,ΔL为标本变形值,F为载荷,S为标本截面面积)。
2.2.3 骨组织形态学分析 标本进行手工磨片后酸性复红染色,应用半自动图像数字化分析仪,放大10倍下进行组织形态学测量,每一标本连续测量8~10个视野,分析下列6个静态参数:松质骨体积(trabecular bone volume,TBV),单位mm2内骨小梁体积占松质骨体积的百分数;平均骨小梁密度(mean trabecular plate density,MTPD),单位mm2内骨小梁个数(个/mm2);平均骨小梁间距或弥散度(mean trabecular plate separation,MTPS),相邻两个骨小梁之间的距离(μm);平均骨小梁厚度(mean trabecular plate thickness,MTPT),骨小梁本身的平均厚度(μm);骨小梁间连接点数(intertra becular node,IBN)形成网状的骨小梁在单位面积内交叉连接点个数(个/mm2);骨小梁末端数(freeending trabecular,FET),单位面积内骨小梁游离残端个数(个/mm2)[7]。
3 结 果
3.2 相关回归分析 本实验统计学分析后发现,松质骨骨密度与弹性模量两组数据之间呈二次曲线相关关系,回归方程为Y=315.30-1327.33X+1523.07X2,相关系数为0.782(P<0.001)。
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>