解放军文职招聘考试动生电动势和感生电动势具有相对性
动生电动势和感生电动势具有相对性
动生电动势和感生电动势的划分,在某些情况下只有相对意义,如本章开始的实验中,将条形磁铁插入线圈中,如果在相对于磁铁静止的参考系观察,磁铁不动,空间各点的磁场也没有发生变化,而线圈在运动,线圈中的电动势是动生的;但是,如果在相对于线圈静止的参考系内观察,则看到磁铁在运动,引起空间磁场发生变化,因而,线圈中的电动势是感生的,在这种情况下,究竟把电动势看作动生的还是感生的,决定于观察者所在的参考系,然而,并不是在任何情况下都能通过转换参考系把一种电动势归结为另一种电动势,不管是哪一种电动势,法拉第电磁感应定律、楞次定律都成立。
(四)应用——电子感应加速器
即使没有导体存在,变化的磁场以在空间激发涡旋状的感应电场,电子感应器就是应用了这个原理,电子加速器是加速电子的装置,他的主要部分如图所示,画斜线的部分为电磁铁两极,在其间隙安放一个环形真空室,电磁铁用频率为每秒数十周的强大交流电流来励磁,使两极间的磁感应强度B往返变化,从而在环形真空室内感应出很强的感应涡旋电场,用电子枪将电子注入唤醒真空室,他们在涡旋电场的作用下被加速,同时在磁场里受到洛伦兹力的作用,沿圆规道运动。
如何使电子维持在恒定半径为R的圆规道上加速,这对磁场沿径向分布有一定的要求,设电子轨道出的磁场为B,电子做圆周运动时所受的向心力为洛伦兹力,因此:
eBv=mv2/R
mv=ReB
也就是说,只要电子动量随磁感应强度成正比例增加,就可以维持电子在一定的轨道上运动。
【课堂小结】
本节课我们学习了感生电动势和动生电动势产生的原因,感生电动势是在感应电场作用下,自由电子定向运动形成的感应电流。动生电动势是自由电子在洛伦兹力的作用些下定向运动形成感应电流,感应电场对电荷的作用力和洛伦兹力充当了电源里的非静电力。
【板书设计】
第五节:电磁感应定律的应用
一、感生电动势
(1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。
(2)定义:由感生电场产生的感应电动势成为感生电动势。
(3)感生电场方向判断:右手螺旋定则。
二、动生电动势
(1)产生:导体切割磁感线运动产生动生电动势,由于导体中的自由电子受到洛伦兹力的作用而引起的
(2)大小:E=BLv(B的方向与v的方向垂直)
(3)动生电动势大小的推导
【布置作业】选修3-2课本第20页“思考与讨论”
课后作业:第20-21页1、2、3、4题
【课后反思】
让学生知道电磁感应产生的机理,激励学生探求知识的来源和根源。有利于培养学生的学习精神。
1.6 自感
【教学目的】
1、 通过逻辑推理和对实验的观察和分析,使学生在电磁感应知识的基础上理解自感现象的产生的它的规律,明确自感系数的意义和决定条件
2、 通过分析理解在自感现象中能量形式的转化情况,为进一步学习电磁振荡打下基础
3、 通过对两个自感实验的观察和讨论,培养学生的观察能力和分析推理能力
4、 日光灯的原理
【重点难点】
重点:使学生在掌握了自感现象与电磁感应现象统一性的基础上,把握自感现象的特点。
难点:断电自感现象中,灯泡突然闪亮一下学生很难理解,是教学中的难点。
【教具】电源(6V)、导线、带闭合铁芯的线圈、电键、灯泡等
【教学过程】
一、复习引入
师:上节课提到了几种不同形式的电磁感应现象,你们认为引起电磁感应现象最重要的条件是什么?
生:穿过电路的磁通量发生变化
师:对!不论采用什么方式,只要能使穿过电路的磁通量发生变化,均能引起电磁感应现象。
1、 揭示现象,提出问题
[实验]:(6V电源,A、B为裸露铜线,L为带闭合铁芯的线圈)
提出问题:在A、B触点断开瞬间,A、B间的高压从何而来?
2、 分析现象,建立概念
在上图所示的电路中,当电键K搭接后,线圈中存在稳定的电流I,线圈内部铁心中存在很强的磁场,穿过线圈的磁通量很大;在电键K断开瞬间,在很短的时间内,线圈中的电流迅速减小到零,穿过线圈的磁通量也迅速减小到零,磁通量的变化量虽然不是很大。但由于时间很短,在电键K由接通至断开瞬间,对于线圈来说,在线圈上产生了很高的感生电动势,这就是引起试验学生强烈触电感觉的高压的来源。
二、新课教学
上述现象属于一种特殊的电磁感应现象,其中穿过电路磁通量的变化是由于通过导体本身的电流发生变化而引起的。这种由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。在自感现象中产生的感应电动势,叫做自感电动势。(板书)
3、 演示现象,强化概念(课本上的实验)
总结1:电路接通时,电流由零开始增加,L支路中感应电流方向与原来电流方向相反,阻碍电流的增加,即推迟了电流达到正常值的时间(见上左图)。启发学生说出这时L相当于瞬时电源(将原电流方向及自感电流的方向在力中标出)
问:如果不断地用手按动K,会发生什么现象?(灯1始终达不到正常发光亮度)加快按动频率,又有什么现象?(灯1逐渐变得更暗)思考这是什么原因?
总结2:K断开,电源切断,但灯不仅不立刻熄灭,反而产生了更强的延时电流,这是为什么?提醒学生,这时一定又出现了新电源,这个电源在哪里?电动势的方向如何?
K断开时,线圈L产生自感电动势,方向与原来电流方向相同,阻碍电流的减小。L相当一瞬时电源,此电源与灯A形成回路(在图中画出电流方向),故灯A还有一段时间的持续电流。灯A比原来更亮地一闪,说明这瞬间电流比原来电流大。显然这是由L产生的。原来L支路中电流iL比A支路中电流iA大很多(如上右图),K断开时,iA立即减为零,而iL由原原值逐渐减为零,推迟了减到零的时间,可见在一段时间内,流过A的电流还大于原来的电流iA,故而发出更亮的光。
板书:自感电动势的方向总是阻碍原来电流的变化。
自感现象既然也是一种电磁感应现象,当然仍然遵守楞次定律,即自感电动势的方向总是阻碍原来电流的变化。
4、 自感现象中的能量转化
5、 自感系数
演示“千人震”实验,折掉铁芯,触电感觉消失,说明线圈中产生的自感电动势还与线圈本身有关。
1) 自感系数反映了线圈对电流变化阻碍作用的大小,不同线圈,自感系数不同,它由线圈本身决定(S、n、密集、铁心)
2) 单位:享利
3) 大小:
【巩固练习】
1、在如图所示的电路(a)、(b)中,电阻R和自感线圈L的电阻值都很小.接通K,使电路达到稳定,灯泡S发光.(A、D)
(A)在电路(a)中,断开K,S将渐渐变暗.
(B)在电路(a)中,一断开K,S将先变得更亮,然后渐渐变暗.
(C)在电路(b)中,断开K,S将渐渐变暗.
(D)在电路(b)中,断开K,S将先变得更亮,然后渐渐变暗.
2、在如图所示的电路中,S1和S2是两个相同的小灯泡,L是一个自感系数相当大的线圈,其直流电阻值与R相等.在电键S接通和断开时,灯泡S1和S2亮暗的顺序是(A)
(A)接通时,S1先达到最亮,断开时,S1后暗
(B)接通时,S2先达到最亮,断开时,S2后暗
(C)接通时,S1先达到最亮,断开时,S1先暗
(D)接通时,S2先达到最亮,断开时,S2先暗
分析与解答:从等效的观点看,在S接通时,相当于L表现为很大的电阻,故S1先达到最亮.选项A正确.
3、如图所示,多匝线圈L的电阻和电源内阻都很小,可忽略不计,电路中两个电阻器的电阻均为R,开始时电键S断开.此时电路中电流强度为I0,现将电键S闭合、线圈L中有自感电动势产生,下列说法中正确的是(D)
(A)由于自感电动势有阻碍电流的作用,电路中电流最终由I0减小到零.
(B)由于自感电动势有阻碍电流的作用,电路中电流最终总小于I0.
(C)由于自感电动势有阻碍电流的作用,电路中电流将保持I0不变.
(D)自感电动势有阻碍电流增大的作用,但电路中电流最终还要增大到2 I0
4、右图中a、b灯分别标有“36V 40W”和“36V 25W”,闭合电键调节,能使a、b都正常发光.断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?
分析:闭合瞬间, a将慢慢亮起来,b立即变亮.稳定后两灯都正常发光,a的功率大,较亮.这时的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间,通过a的电流将逐渐减小,a渐渐变暗到熄灭,而ab组成同一个闭合回路,所以b灯也将逐渐变暗到熄灭,而且开始还会闪亮一下,这时相当于一个电源.
编辑推荐:
温馨提示:因考试政策、内容不断变化与调整,长理培训网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准! (责任编辑:长理培训)
点击加载更多评论>>